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Abstract: 

Some researchers have recently criticized using the normal distribution for modeling stock returns. While it’s 
true that the normal distribution is inappropriate and leads to the extreme outliers, known as the Black Swans 
problem, other elliptical distributions allow addressing this issue. The Student’s t-distribution with 3 to 4 
degrees of freedom and the Laplace distribution both can be used to largely eliminate Black Swans in daily 
returns. Both distributions are compatible with the modern portfolio theory. We also show that no single 
distribution is clearly preferred when describing periodic returns, but the Black Swans problem is not so acute 
when considering returns over holding periods longer than one month. 
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The modern portfolio theory has recently been severely criticized for its inability to account 

for extreme losses. One of the most prominent critics, Nassim Taleb, argues in Taleb (2007) that the 

underlying assumption of the securities returns being normally distributed is wrong, and that the 

extreme outliers (“Black Swans”) can’t be effective modeled by any suitable random distribution to 

make them explainable and predictable. While Mr. Taleb gives very strong arguments, his books 

lack more solid theoretical basis in prove his hypothesis, such as parametric or non-parametric 

distributional tests on historical data samples. So, speaking of Black Swans, we first need to check 

the hypothesis that the normal distribution actually fails to account for them. 

Second, the modern portfolio theory, despite common misperception, doesn’t actually rely 

on returns being normally distributed. The theory only assumes that all portfolio decisions can be 

made using the expectation and volatility of returns. Mathematically speaking, it supposes that the 

portfolio optimization can effectively be performed in the mean-variable space. Thus, any 

distribution that is fully defined by these two parameters is suitable for the modern portfolio theory. 

As it was stated in Chamberlain (1983) and Owen and Rabinovitch (1983), at least one broad class 

of distributions, elliptical distributions, fits this requirement. And the normal (Gaussian) distribution 

is just one particular instance of this class. Even if it fails to describe Black Swans, we still need to 

check other distributions to see it there’s a better substitute. 

 

Black Swans in daily returns 

Let’s start looking for Black Swans in daily returns, the most exhaustive source of data for 

distributional analysis. The longest sample we consider in this research is the Dow Jones Industrial 

Average (DJIA) index sample that contains about 95 years of daily quotes. While DJIA has long 

history, in practice the Standard & Poor’s 500 index is mostly used as a proxy for large-cap market 

portfolio. We’ll consider a sample of daily quotes for an ETF (NYSE: SPY) that closely tracking 

this index, the sample contains 17 years of daily quotes. Since both DJIA and SPY are indices, i.e. 

represent diversified portfolios, they may not be representative for judging about single securities. 
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To make this research more comprehensive, we will additionally consider samples for two different 

liquid stocks, a high-beta stock of General Electric (NYSE: GE) and a low-beta stock of Exxon 

Mobil (NYSE: XOM). Both samples contain 20 years of market data. 

The data samples analyzed in this research are: 

• DJIA sample of 23,981 observations from January 5, 1915 to July 27, 2010; 

• SPY sample of 4,510 observations from February 1, 1993 to December 23, 2010; 

• GE sample of 5,042 observations from January 2, 1990 to December 31, 2010; 

• XOM sample of 5,042 observations from January 2, 1990 to December 31, 2010. 

All samples contain logarithmic returns and are built using Yahoo Finance market data 

(closing prices adjusted for corporate actions). 

The DJIA sample has a large excess kurtosis (22.04) and is somewhat asymmetrical 

(skewness -0.56), which constitute a significant deviation from normality. Will it lead to Black 

Swans? Let’s consider an extreme outcome of catastrophic daily loss of -6.9%, which is about 6 

standard deviations below the mean daily return. If DJIA returns were normally distributed, such an 

outcome would occur once in 3.5 million years, so we are highly unlikely to meet even a single such 

a loss in our 95 years sample. In fact, there’re 28 days with returns below -6.9%. It seems we’ve 

encountered a real Black Swan. The actual probability of such an outcome is 1 million times higher 

than the normal distribution predicts. If we took less extreme losses, like -5.8% (about 5 standard 

deviations below the mean) and -4.6% (about 4 standard deviations below the mean), their actual 

probability would be 7,000 times and 130 times higher than the normal distribution predicts. 

Maybe the DJIA is a rare exception in the stock market? Let’s check if SPY has any Black 

Swans. The SPY sample has lower but still high excess kurtosis (10.11), but it almost symmetric 

(skewness -0.05). For SPY, the actual probability of extreme loss of -7.4% (about 6 standard 

deviations below the mean) is 900 thousand times higher than the normal distribution predicts. This 

number is very close to that of DJIA, and this resemblance holds for other outliers considered. For 

extreme losses of -6.2% (about 5 standard deviations below the mean) and -5.0% (about 4 standard 

deviations below the mean), their actual probability would be 6,200 times and 132 times higher than 

the normal distribution predicts.  

The Black Swans we met in S&P 500 are very similar to those in DJIA. Is the same true for 

single stocks? Despite GE and XOM are very different securities with quite different volatility, they 

both have a high excess kurtosis (8.07 for GE, 9.01 for XOM) and insignificant skewness (0.02 for 

GE, 0.06 for XOM). The normal distribution does a terrible job predicting extreme outliers for both 

securities. If we had assumed their returns are normally distributed, we would have underestimated 

true probability of catastrophic losses of about 6 standard deviations below the mean by 400,000 

times for GE and by 700,000 times for XOM. While the numbers are slightly less than those for 

DJIA and SPY, they’re still huge.  

The Black Swans are there, and Mr. Taleb seems to be absolutely right regarding the normal 

distribution. But is he right regarding failure of the modern portfolio theory? Luckily, no. Some 

other elliptical distributions can be used to model daily returns that eliminate the Black Swans 

problem. As you can see from Table 1, if the Student’s t distribution with 3 degrees of freedom does 

much better job in estimating probability of extreme outliers. For DJIA, SPY and GE it slightly (1.1 

to 1.5 times) underestimates the actual probability, and for XOM it even overestimates it. The 

Laplace distribution, while being substantially worse the t distribution, still is much better is 

predicting catastrophic events, its worst mismatch is only about 20 times instead of 1 million times 

for the normal distribution. 
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Table 1. The number of years it take to encounter an extreme daily loss  

Number of Years Assuming Distribution of Daily Returns Extreme  
Daily Loss Normal Student’s t (df=3) Laplace 

Actual Number  
of Years 

  Panel a. DJIA   

-6.9% 3,466,480 4.14 73.75 3.41 

-5.8% 15,878 2.50 17.28 2.17 

-4.6% 120 1.28 3.55 0.93 

  Panel b. SPY   

-7.4% 3,249,506 4.12 57.72 3.59 

-6.2% 13,994 2.46 13.74 2.25 

-5.0% 148 1.33 3.27 1.12 

  Panel c. GE   

-11.3% 4,141,433 4.20 55.20 10.04 

-9.4% 13,745 2.46 12.54 2.01 

-7.5% 121 1.28 2.85 0.84 

  Panel d. XOM   

-9.3% 4,646,854 4.24 37.36 6.70 

-7.7% 13,312 2.45 8.79 3.35 

-6.2% 140 1.32 2.26 1.83 

 

 

Goodness of fit tests 

While checking the difference between actual and theoretic probability at several arbitrary 

selected points allowed us to make a conclusion that the normal distribution can’t effectively model 

the log-returns of securities, that test was somewhat artificial. Now we can use a more theoretically 

sound way of testing distributional assumptions. The typical question asked by a statistician is 

whether the hypothesis that the observed data fit the theoretical distribution holds with a given 

significance level. We’ll use a slightly different question — which of the elliptical distributions 

would fit the actual data best. 

The first test we use in this research is the well-known Pearson’s chi-squared test. Test 

formula for the test statistics is 
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where Oi denotes the actual number of observations between xi and xi–1, xi are boundaries of bins (x0 

is –∞ and xn+1 is +∞), F is the CDF of the theoretical distribution, N is the same size. The test was 

performed using n = 201, x1 = –10%, x2 = –9.9%, …, xn = 10%, so the χ
2
 is expected to adhere to the 

chi-squared distribution with 200 degrees of freedom (we have 203 intervals and estimate 2 

parameters from the sample). 
Results of the chi-squared test are given in Table 2. It’s quite clear than the normal 

distribution is inferior to both the t-distribution and the Laplace distribution. The t-distribution is 

preferred for DJIA and SPY, somewhat better for GE and approximately as good as the Laplace 

distribution when modeling XOM log-returns. One can perceive the difference better when looking 

at the graphic of PDF for the actual and theoretic distribution, which is shown on Figure 1. The 

normal PDF clearly misfits the actual PDF, and the difference is really huge in the tails. 
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Figure 1. The probability density functions for the DJIA log-returns distributions 

Note: the box, which contains a magnified version of the left tail, clearly shows that the normal distribution largely 

underestimates probability of the extreme outliers. 

 
Table 2. The chi-squared test results and critical values  

χ
2
 Values for Distributions χ

2
 Critical Values 

Security 
Normal Student’s t Laplace 5% 1% 0.1% 

DJIA 1,427,363,104,075 368.98 3,106.25 233.99 249.45 267.54 

SPY 7,697,207,461 260.49 628.59    

GE 91,023 439.25 518.93    

XOM 4,056,522 424.59 421.57    

 

The seconds test used is the Korlogorov-Smirnov (K-S) goodness of fit test, a non-

parametric test that makes no assumption of the underlying distribution. While more powerful tests 

exist for normality, such as Shapiro-Wilk and Adnerson-Darling tests, we’re using the K-S test since 

we need to check hypothesis for distributions other than the normal. The K-S test statistics is 

( ) ( ) ( )
1 1
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i N i N

i i
D D D D F y D F y
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+ − + −
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where yi denotes the i-th element of the sorted sample for daily log-returns. K D N=  is expected 

to follow the Kolmogorov distribution. 

Results for the K-S test are given in Table 3. Please note that we use K values, for D values 

in this table. The normal distribution is inferior according to this test as well. Unlike the chi-squared 

test, the t-distribution doesn’t seem preferred to the Laplace distribution any more — for latter fits 

somewhat better for SPY and much better for XOM, while the former is significantly better only for 

DJIA. 
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Table 3. The Kolmogorov-Smirnov test results and critical values  

K Values for Distributions K Critical Values 
Security 

Sample 
Size Normal Student’s t Laplace 5% 1% 0.1% 

DJIA 23,981 13.3216 2.9779 3.4750 1.22 1.36 1.63 

SPY 4,510 5.6397 1.8815 1.8229    

GE 5,042 5.5924 2.0564 2.1811    

XOM 5,042 3.7918 3.2614 1.9703    

 

The actual and theoretic cumulative probability functions for the SPY log-returns are shown 

on Figure 2. While both the t-distribution and the Laplace distribution CDFs are quite close to the 

actual function, the normal CDF clearly misfits it up to -2.5% and lies well below. In terms of 

probability, this means that the probability of losses calculated assuming the log-returns are 

normally distributed (i.e. the returns are log-normally distributed) would underestimate the actual 

losses a great deal, which is corresponds to the results displayed in Table 1. 

 
Using the Student’s t distribution for modeling daily returns 

The Student’s t-distribution with 3 degrees of freedom proved to be the preferred distribution 

for modeling log-returns according to the chi-squared test, and performed quite well according to the 

K-S test. But why have we chosen 3 degrees of freedom and how do other t-distributions behave? 

The t-distribution, unlike the normal and the Laplace ones, doesn’t have a constant kurtosis — its 

excess kurtosis is equal to ( )6 4ν − , where ν > 4 denotes the number of degrees of freedom. Excess 

kurtosis for the normal distribution is 0, and for the Laplace distribution is 3.  

The sample excess kurtosis for all the securities reviewed is above 8. Therefore, the t-

distributions with ν > 4 fail to model the sample kurtosis. So our primary candidates for testing are 

the t-distributions with ν = 3 and ν = 4 (since the variance is infinite for ν ≤ 2, but all the samples 

clearly have finite variances). Both distributions have interesting statistical properties, and the 

distribution with ν = 4 is practically appealing for modeling since its inverse CDF has a simple 

analytical expression.  The Student’s t-distribution is not limited to integer number of degrees of 

freedom. Non-integer values of ν were also tested in this research. We used different values around 

ν = 3 and ν = 4 with step of 0.10 in an attempt to find local minimums for K. 

The classic t-distribution has only one parameter, the number of degrees of freedom. So we 

use a generalized t-distribution that allows choosing the location and the scale parameters. A random 

variable that adheres to the generalized t-distribution is expressed as follows: 

2 22
, t

t

t
t ν
ν

µ ν
σ σ

σ ν

− −
= =�  

where tν�  is a random variable following the generalized t-distribution, tν  is a random variable 

following the t-distribution, µ  is the expected value, 2σ  is the variance. 

 
Table 4. The chi-squared and K-S test results for the Student’s t-distribution  

χ
2
 Values for t-distributions K Values for t-distributions 

Security 
ν = 2.8 ν = 3 ν = 3.7 ν = 4 ν = 2.8 ν = 3 ν = 3.7 ν = 4 

DJIA 398.84 368.98 684.72 928.20 2.9055 2.9779 5.9419 6.3446 

SPY 201.82 260.49 231.18 314.93 1.8412 1.8815 2.9037 3.0419 

GE 377.32 439.25 392.90 477.31 2.0909 2.0564 1.9249 2.0047 

XOM 462.90 424.59 238.97 258.65 3.2684 3.2614 1.2410 1.2660 

Note: the distribution that is the best fit according to the criterion is highlighted with bold. 
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Figure 2. The left tail of the cumulative distribution functions for the SPY log-returns distributions 

Test results for the Student’s t-distributions with different degrees of freedom are given in 

Table 4. While they generally support the preliminary conclusion that the distributions with 3 to 4 

degrees are freedom fit the actual data best, they do not indicate the sole best number of degrees of 

freedom to use. Moreover, the chi-squared and the K–S tests favor different numbers of degrees of 

freedom for some securities. The chi-squared test shows clear preference for ν = 2.8 for modeling 

SPY and GE returns, ν = 3 for DJIA and ν = 3.7 for XOM. The K–S test shows that the t-distribution 

with ν = 2.8 fits the actual distribution of DJIA and SPY the best, while for GE and XOM the 

preferred amount of degrees of freedom would be 3.7. If we limit ourselves with integer values of 

ν only, the most reasonable choice is ν = 3, although for XOM ν = 4 is much better. That may 

indicate that ν = 3 is preferred for modeling high-kurtosis or higher-volatility assets, while ν = 4 

seems better for stocks with lower volatility. 

 

Using the Laplace distribution for modeling daily returns 

The Laplace distribution is an elliptic distribution that is overlooked by researchers and 

analysts. Unlike the normal the t-distributions, which both have a smooth top, the Laplace 

distribution has peaked top. Its excess kurtosis is 6, so it has fatter tails than the normal distribution. 

Unlike both the normal and t-distributions, the Laplace distribution has a simple analytical 

expression of PDF, CDF and the inverse CDF, which is quite essential for implementation of custom 

computer software. 

The Laplace distribution, while not having any degrees of freedom, still allows discrepancy 

of choosing its parameters. The Laplace distribution PDF and CDF are expresses as 

( ) ( ) ( )
1 1

exp ; 1 sgn 1 exp
2 2

x x
f x F x x
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where µ is the location parameter (the mode, median and mean are all equal to µ), b is the scale 

parameter (the variance is equal to 2b
2
). Hence we can estimate the parameters as follows: 

1) L1: use the sample mean for µ and the mean absolute deviation from µ for b; 

2) L2: use the sample mean for µ and the standard deviation for b: ˆ ˆ 2b σ= ; 

3) L3: use the sample median for µ and the mean absolute deviation from µ for b; 

4) L4: use the sample median for µ and the standard deviation for b: ˆ ˆ 2b σ= . 

 
Table 5. The chi-squared and K-S test results for the Laplace distribution  

χ
2
 Values for t-distributions K Values for t-distributions 

Security 
L1 L2 L3 L4 L1 L2 L3 L4 

DJIA 3,106.25 1,859.74 3,050.63 1,810.45 3.4750 4.4437 2.9970 5.0539 

SPY 628.59 456.49 638.30 454.74 1.8229 1.7932 1.2872 1.9338 

GE 518.93 486.87 524.15 491.21 2.1811 2.1413 1.6900 2.0458 

XOM 421.57 431.24 433.49 443.12 1.9703 2.0497 2.6858 2.7475 

Note: the distribution that is the best fit according to the criterion is highlighted with bold. 

 

Test chi-squared test results for different sets of estimates are shown in Table 5. 

Surprisingly, the chi-squared and the K–S tests suggest using completely different sets of estimates 

for the Laplace distribution. The latter clearly prefers the sample median as the estimate for µ and 

the mean absolute deviation from it as the estimate for b (expect for XOM, for which the sample 

mean it the best estimate for µ), while the former typically favors using the sample standard 

deviation as the estimate for b. 

We can also compare the test results for the Laplace and for the Student’s t-distributions. 

While the chi-squared tests certainly indicate the superiority of the t-distribution, the K–S test favors 

the Laplace distribution more. Since the chi-squared test is based on the PDF and the K–S test is 

based on the CDF, we can conclude that it’s the latter which should be given a higher weight for 

decision making. Therefore, using the Laplace distribution (variant L3 or L1) is the recommended 

way of modeling daily returns for securities. 

 

Modeling periodic returns 

As it has been shown in the previous sections, the Student’s t or the Laplace distribution is 

much more appropriate for modeling daily log-returns both for individual stocks and for diversified 

equity portfolios than the normal distribution. But while for the latter it’s true that the sum of 

normally distributed random variables adhere to the normal distribution, the same doesn’t hold for 

both the t-distribution and the Laplace distribution. Thus, we can’t rely on those distributions being 

appropriate for modeling periodic returns and must research this issue separately. 

We use the Monte-Carlo simulation to generate a large sample (23,981) of periodic returns 

for different time intervals based on the assumption that the underlying daily returns follow either 

one of the Student’s t or the Laplace distributions discussed in the previous sections. If the 

underlying daily rates follow the Student’s t-distribution with df = 3, the corresponding periodic 

returns seem to adhere to a Student’s t-distribution but with a different degrees of freedom. The 

longer is the period the larger is df, and starting with 63 trading days (3 months) we can reasonably 

model the periodic returns using the normal distribution, based on both chi-squared and 

Kolmogorov-Smirnov goodness of fit criteria (see Table 6). 
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Table 6. The chi-squared and K-S test results for a simulated periodic returns distribution when daily  

returns follow the Student’s t-distribution with 3 degrees of freedom  

 Normal t (df = 3) t (df=4) t (df=6) Laplace 

Days χ
2
 K χ

2
 K χ

2
 K χ

2
 K χ

2
 K 

1 2.1E+11 15.0288 213.1 1.9391 1,128.3 6.9815 2,569.8 10.5469 2,260.7 2.3186 

2 1,526,509 10.0676 488.3 4.0981 280.9 2.0067 938.6 5.5339 828.9 3.2874 

5 3162.6 12.3580 416.7 2.8462 566.1 4.2948 1,342.4 7.7448 820.2 3.8679 

10 770.2 5.1604 2,094.0 9.0188 507.3 3.8093 224.2 1.2874 1,047.4 4.9328 

21 456.0 3.9687 2,468.3 10.5040 691.9 5.1750 220.1 1.5964 1,058.5 5.4341 

42 253.5 2.5762 2,223.9 11.7649 775.5 6.4506 304.9 2.8707 1,198.7 6.1310 

63 211.9 2.1534 1,637.8 11.7318 598.7 6.4001 252.1 2.8814 933.7 5.9301 

126 206.5 1.8200 1,372.1 12.1172 570.0 6.7929 272.6 3.4632 828.6 6.7649 

252 219.3 1.8264 1,115.2 12.7168 488.3 7.3944 260.3 3.8230 721.4 6.8524 

Note: the test statistics that are significant with 95% confidence level are highlighted with bold. 

 

As you can see from Table 6, the Student’s t-distribution with 3 degrees of freedom, which is 

used to model daily returns, is inappropriate for modeling periodic returns for periods over 1 week. 

For periods from 1 week to 1 month, it’s best to use t-distributions with 6-7 degrees of freedom. For 

periods of 3 months and more it’s quite appropriate to use the normal distribution, which passes chi-

squared test and is quite good on Kolmogorov-Smirnov test, but using a t-distribution with 17-18 

degrees of freedom (not shown in the table, but their χ
2
 are 186 to 200 and their K are 0.60 to 0.80) 

provides even better fit. For intermediate periods, it’s better to use a t-distribution with 11 degrees of 

freedom, which fits 2-3 months returns the best (not shown in the table, but its χ2 is 173 to 200 and 

its K is 0.62 to 0.83). 

When the Laplace distribution is used to model the underlying daily returns, the 

corresponding periodic returns have quite a different distribution. It’s important to note than even 

for 2-days returns the Laplace distribution is inappropriate to use, and starting with monthly returns 

the normal distribution becomes appropriate to model the periodic returns both on chi-squared and 

on Kolmogorov-Smirnov criteria (see Table 7). For periods of 2-10 days a t-distribution seems to be 

reasonable, and the one with 6 degrees of freedom would not be a bad choice. 

 
Table 7. The chi-squared and K-S test results for a simulated periodic returns distribution when daily  

returns follow the Laplace distribution  

 Normal t (df = 3) t (df=4) t (df=6) Laplace 

Days χ
2
 K χ

2
 K χ

2
 K χ

2
 K χ

2
 K 

1 24,864,090 10.2436 1,032.2 4.8236 635.2 3.6801 1,161.0 6.3969 116.8 0.5945 

2 172,293.1 5.8108 1,979.6 8.4924 446.6 3.5755 196.6 1.8128 496.6 3.4051 

5 15,076.9 2.7287 3,576.5 11.4132 1,146.0 6.0663 336.7 2.5978 1,281.8 5.4930 

10 315.5 1.2987 4,498.5 12.6291 1,634.7 7.4333 583.2 3.8856 1,576.8 6.3716 

21 214.8 1.1344 4,698.7 13.0403 1,729.4 7.9301 634.7 4.3906 1,532.8 6.8451 

42 198.1 0.9066 4,609.6 13.5848 1,795.5 8.2427 712.3 4.7357 1,632.5 7.0552 

63 239.5 0.8192 3,696.0 13.4400 1,488.8 8.2363 638.8 4.7278 1,433.0 6.5204 

126 198.7 0.6970 3,062.5 13.7043 1,251.7 8.3972 537.0 4.8118 1,134.2 6.8208 

252  0.5309  13.8429  8.5740  4.9955  6.7149 

Note: the test statistics that are significant with 95% confidence level are highlighted with bold. 

 

Finally, let’s check the hypothesis of the best distribution for modeling periodic returns on 

actual data. Since we can’t rely on the fact that any 1-month holding period coincides with a 

calendar month or a 1-yeah holding period is always a calendar year, let’s consider all possible daily 

return samples of specific length (21 trading days per month, 251 trading days per year). Using the 
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same daily return samples for DJIA, SPY, GE and XOM we used before in this article, we can check 

if the goodness of fit criteria favors the same distributions as for the modeled data. 

As you can see from Table 8, the actual historical distribution differs a great deal from the 

distribution of Monte-Carlo modeled data. Unlike the latter, it seems that the Student’s t-distribution 

with 6 degrees of freedom doesn’t fit well to the actual monthly returns distribution, and the t-

distribution with 18 degrees of freedom doesn’t fit at all the actual annual returns distribution. Chi-

squared criterion doesn’t favor any particular distribution, but according to the Kolmogorov-

Smirnov criterion the Laplace distribution does a good job almost for all securities (with the 

exception of XOM, for which the normal distribution is even better). This result is much unexpected 

and clearly contradicts to result obtained using the Monte-Carlo simulation. 

 
Table 8. The chi-squared and K-S test results for historical periodic returns distribution  

 Normal t (df=4) t (df=6) t (df=18) Laplace 

Security χ
2
 K χ

2
 K χ

2
 K χ

2
 K χ

2
 K 

 Panel a. Monthly returns (21 trading day) 

DJIA 2,228.6 11.1320 684.5 7.1325 1,011.2 7.6127   1,313.9 5.5823 

SPY 546.5 5.2560 382.7 4.3644 380.1 4.6511   486.1 2.9660 

GE 507.4 5.2840 267.9 1.8282 323.5 3.3446   306.7 1.5693 

XOM 240.9 2.4817 405.1 3.7342 252.1 2.2310   433.9 2.9304 

 Panel b. Annual returns (252 trading days) 

DJIA 509.2 10.2179   402.8 7.7456 449.7 9.3534 543.3 6.5334 

SPY 564.6 8.7737   558.3 8.2382 559.4 8.5817 498.6 5.1761 

GE 448.7 9.4501   347.4 7.9931 414.6 9.0437 245.8 5.5579 

XOM 290.4 2.9040   365.8 4.6234 305.8 3.3664 388.7 4.0537 

Note: the distribution that is the best fit according to the criterion is highlighted with bold. 

 

Conclusions 

The modern portfolio theory is not as bad as its critics say. While Nassim Taleb and others 

are partially right in their claims that the normal distribution is absolutely inappropriate for 

describing the daily log-returns, it doesn’t mean the theory itself is flawed. As it has been shown in 

this article, the Student’s t-distribution or the Laplace distribution can be used to describe the 

distribution of daily log-returns and address the famous problem of the extreme outliers (“Black 

Swans”). While the problem is not completely eliminated, the discrepancy between the actual 

probability and the theoretically predicted one becomes quite minor, thousands and even millions 

times less than it is when using the normal distribution. The modern portfolio theory allows both the 

Student’s t-distribution and the Laplace distribution to be used for describing the returns without 

altering its assumptions. Based on my research, I recommend using either the t-distribution with 3 to 

4 degrees of freedom, or the Laplace distribution (with the sample median and the mean absolute 

deviation from it as parameters) to model the daily log-returns. 

Unlike daily returns, there’s no clear preference for modeling periodic log-returns. While the 

t-distribution fits the Monte-Carlo simulated data better, the Laplace distribution seems to do a much 

better job when describing the historical returns. On the other hand, Black Swans problem is not 

such a big issue for periodic returns. The difference between the actual and the theoretic probability 

is moderate, and thus the risks related to investing over holding periods longer than 1 month should 

be manageable even if we assume the normal distribution of log-returns. 
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